相遇问题公式
2022-09-27 09:57:58
追及问题公式和相遇问题公式是什么?
追击问题的公式:
1、速度差×追及时间=路程差。
2、路程差÷速度差=追及时间(同向追及)。
3、速度差=路程差÷追及时间。
4、甲经过路程—乙经过路程=追及时相差的路程。
两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到。一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;一种是多人追及、多人相遇,此类则较困难。
追及问题,两物体在同一直线上运动所涉及的追及、相遇、相撞的问题,通常归为追及问题,速度差×追及时间=追及路程,路程差÷速度差=追及时间(同向追及)。
解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法。相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。
驶的方向,相向,同向还是背向,不同的方向解题方法就不一样。是否相遇,有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程。
所有的相遇问题的计算公式
①速度和×相遇时间=总路程②总路程÷速度和=相遇时间③总路程÷相遇时间=速度和。
相遇问题和追及问题的公式是什么?
追击问题和相遇问题都是路程相等
追击问题:路程=速度差×追击时间
相遇问题:路程=速度和×相遇时间
相遇问题的关系式是:
速度和×相遇时间=路程;
路程÷速度和=相遇时间;
路程÷相遇时间=速度和。
扩展资料:
应用题的解题思路:
(1)替代法有些应用题,给出两个或两个以上的的未知量的关系,要求求这些未知量,思考的时候,可以根据题中所给的条件,用一个未知量代替另一个未知量,使数据量关系单一化。从而找到解题途径。(如倍数关系应用题)
(2)假设法有些应用题要求两个或两个以上的未知量,思考的时候需要先提出某种假设,然后按照题里的己知量进行推算出来。根据数据量上出现的矛盾,再进行适当调整,最后找到正确答案。( 如工程问题)相遇问题:时间=距离/(甲的速度+乙的速度)
t=s/(v1+v2)
追及问题:时间=距离/(甲的速度-乙的速度)------假设甲的速度高于乙的速度
t=s/(v1-v2)五、 行程问题
1. 相遇问题
路程和=速度和×相遇时间
2. 追及问题
路程差=速度差×追及时间
3. 流水行船
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2
水速=(顺水速度-逆水速度)÷2
4. 多次相遇
线型路程: 甲乙共行全程数=相遇次数×2-1
环型路程: 甲乙共行全程数=相遇次数
其中甲共行路程=单在单个全程所行路程×共行全程数
5. 环形跑道
6. 行程问题中正反比例关系的应用
路程一定,速度和时间成反比。
速度一定,路程和时间成正比。
时间一定,路程和速度成正比。
7. 钟面上的追及问题。
① 时针和分针成直线;
② 时针和分针成直角。
8. 结合分数、工程、和差问题的一些类型。
9. 行程问题时常运用“时光倒流”和“假定看成”的思考方法。相遇问题和追及问题的公式是路程=速度×时间,路程÷时间=速度,路程÷速度=时间,两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。相遇问题是研究速度,时间和路程三者数量之间的关系。
追击相遇问题在环形跑道上的公式?
同向跑时,相遇时间=跑道÷两人速度差(两人起点相同用这个公式)
甲的路程 +乙的路程=环形周长
追及时间=路程差÷速度差
速度差=路程差÷追及时间追及时间×速度差=路程差
快的路程-慢的路程=曲线的周长
一、追及问题
两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到。一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;一种是多人追及、多人相遇,此类则较困难。
公式:追及问题 两物体在同一直线上运动所涉及的追及、相遇、相撞的问题,通常归为追及问题 速度差×追及时间=追及路程 路程差÷速度差=追及时间(同向追及)
(S1-S2)=(v1- v2)*t
速度差×追及时间=路程差
路程差÷速度差=追及时间(同向追及)
速度差=路程差÷追及时间
甲经过路程—乙经过路程=追及时相差的路程
四、基本形式:
A.匀加速直线运动的物体追匀速直线运动的物体。
这种情况只能追上一次两者追上前有最大距离,条件:v加=v匀。
B.匀减速直线运动追及匀速运动的物体。
当v减=v匀时两者仍没达到同一位置,则不能追上。
当v减=v匀时两者在同一位置,则恰好能追上,也是两者避免相撞的临界条件。
当两者到达同一位置时,v减>v匀,则有两次相遇的机会。
C.匀速运动的物体追及匀加速直线运动的物体。
当两者到达同一位置前,就有v加=v匀,则不能追及。
当两者到达同一位置时,v加=v匀,则只能相遇一次。
当两者到达同一位置时,v加D.匀速运动的物体追及匀减速直线运动的物体,这种情 况一定能追上。
E.匀加速运动的物体追及匀减速直线运动的物体,这种情况一定能追上。
F.匀减速运动的物体追及匀加速直线运动的物体。
当两者到达同一位置前, v减=v加,则不能追及。
当v减=v加时两者恰好到达同一位置,则只能相遇一次。
当第一次相遇时v减>v加,则有两次相遇的机会。
相遇路程÷速度和=相遇时间
速度和×相遇时间=相遇路程
相遇路程÷相遇时间=速度和
甲走的路程+乙走的路程=总路程
注意:两个运动的物体相遇,即相对同一参考系来说它们的位移相等。在解题中一定要注意相遇时间小于运动的总时间。
例1:甲、乙两地相距710千米,货车和客车同时从两地相对开出,已知客车每小时行55千米,6小时后两车仍然相距20千米。求货车的速度?
分析:货车和客车同时从两地相对开出,6小时后两车仍然相距20千米,从710千米中减去20千米,就是两车6小时所行的路。又已知客车每小时行55千米,货车的速度即可求得。
(710-20)÷6-55
=690÷6-55
=115-55=60(千米)
答:货车时速为60千米。路程=速度×时间。
相遇问题:甲、乙同时出发相向而行,则:甲走的路程+乙走的路程=总路程。即(甲的速度+乙的速度)×相遇时间
追及问题:(1)甲、乙同向不同地,则:追者走的路程=前者走的路程+两人间的距离
(2)甲、乙同向同时出发(设甲的速度快),则:
甲的速度×时间—乙的速度×时间=环形跑道1圈
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。
国际空运 | 国际海运 | 跨境铁路 | 国际快递 |
---|---|---|---|
空运价格查询 | 海运价格查询 | 铁路价格查询 | 快递价格查询 |
我的物流 | 起始地 | → | 目的地 | 45+ | 100+ | 300+ | 详情 |
---|---|---|---|---|---|---|---|
国际空运 | 深圳空运 | → | 迪拜 | 30 | 25 | 20 | 查看详情 |
国际海运 | 广州海运 | → | 南非 | 26 | 22 | 16 | 查看详情 |
国际快递 | 上海快递 | → | 巴西 | 37 | 27 | 23 | 查看详情 |
跨境铁路 | 宁波铁路 | → | 欧洲 | 37 | 27 | 23 | 查看详情 |
多式联运 | 香港快递 | → | 南亚 | 30 | 27 | 26 | 查看详情 |
2024-11-21
2024-11-18
2024-11-18
2024-11-18